
• TextSimplifier is modular and has 5 disjoint modules.
• Each major module is a separate subfield in text simplification and developed separately.
• Its design and development consider dependencies to ease extensions.
• Preliminary system demo: http://130.56.247.69:8501/

Method

Lexical Substitution
• XLNet model was used to compute a model

prediction score and an embedding similarity
score. We defined !!"#$% as follows:

• Sentence similarity score: to ensure that the
candidates fit in the global context of the sentence
[3].

Comparison

Input The purpose of RL is for the agent to learn an optimal, or nearly-optimal, policy 
that maximizes the reward function .

TextSimplifier The purpose of RL (reinforcement learning) is for the agent to learn an optimal, or 
nearly-optimal, policy that maximizes the reward (payoff, incentive, benefit) 
function.
reinforcement learning: https://en.wikipedia.org/wiki/Reinforcement_learning
reward: https://simple.wikipedia.org/wiki/Reward 
reward: act or give recompense in recognition of someone's behavior or actions)

MadDog The purpose of RL (Reward Learning) is for the agent to learn an optimal , or nearly 
- optimal , policy that maximizes the reward function

Lexi (Hero) The purpose of RL is to learn the best policy. The best policy will give the best 
reward. 

Information Module

• Each complex word and acronym expansion was linked to its corresponding web page
from Wikipedia.

• Web pages from both English and simple Wikipedia were used for this purpose.

Method P@1 (%)
LS07 CoInCo

BERT-based 31.7 43.5
XLNet+embs 49.53 51.5
LexSubCon 51.7 50.5
CILex 53.38 55.73

Method F1 (%)
SDU MeDAL

BERT-based 59.73 44.39
XLNet+embs 84.24 74.91
Triplet-Network-based 85.70 75.19

!!"#$% = #$ % & + ($(%|+)

!&$'% = cos(0, 0()

! = 2!!"#$% + 3!&$'%
Acronym Disambiguation

• Triplet-network-based method [4].

• Defined anchor, positive, and negative
sentences.

• Frequency-based, BERT-based methods.
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• Natural language is often ambiguous with frequent occurrences of
complex terms, acronyms, and abbreviations that require
simplification.

• When using automated text simplification methods, it is important to
identify essential components in a text simplification system. Thus,
we conducted a user study.

• Based on the user study, we propose a text simplification framework
targeting lexical simplification.

• The system extends the text simplification pipeline proposed by
(Shardlow, 2014) [1].

• Our framework called TextSimplifier consists of the following
components.

1. complex word identification
2. lexical substitution
3. acronym identification (new)
4. acronym disambiguation (new)
5. information module (new)

Abstract

• After obtaining the proper ethics approvals and research permissions,
we recruited participants of different English-speaking backgrounds,
ages, and educational qualifications for the user study.

• We conducted an online survey to obtain user input on essential
components and aspects in a text simplification system.

• We co-created the survey questions of this preliminary user study
with user and health experience experts, mainly targeting the
complexities frequently found in complex medical text.

User Study

Participants’ demographic information: English-speaking background, age, and education.

Evaluation results from the 
user study for all the 
participants. 

Labels of the y-axis are as follows:
E1: Providing the correct expansion of shortened words is important for better understanding of unfamiliar acronyms.
E2: Inclusion of synonyms/similar substitutes for complex words is important for better understanding of complex text.
E3: Inclusion of additional information about words supplementing with definitions, links to more information can improve
understandability of complex text.
E4: Systems that identify complex words and acronyms as well as provide substitutes, correct expansions, and additional
information are useful.
E5: Grammatical structures and sentence structures can add complexity to text.
E6: Content simplification is more important compared to simplifying grammatical structures and sentence structures.
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Complexity Identification

Complex Word Identification
• Complex Word Identification Task 

dataset 2018 – News, WikiNews, 
Wikipedia articles.

• BERT-based method (F1 score: 75%)
• Frequency of a word per million words

of English text based on Google Books
Ngrams

Acronym Identification
• Acronym identification dataset from 

Scientific Document Understanding  
Task – scientific papers.

• CNNs+attention (F1 score: 93.94%)
• Rule-based method [2] (F1 score: 92%)
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Proposed Framework
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