

CompLex-ZH: A New Dataset for Lexical Complexity Prediction in Mandarin and Cantonese

Le Qiu¹, Shanyue Guo¹, Tak-sum Wong¹, Emmanuele Chersoni¹, John S. Y. Lee², Chu-Ren Huang¹ ¹The Hong Kong Polytechnic University, ²City University of Hong Kong

TSAR 2024 @ EMNLP 2024

Introduction

Background

- Lexical complexity, being the first step of text simplification pipelines, has received increasing attention in the NLP community.
- However, new datasets and several shared tasks are available only for English and for a limited number of Western languages (Paetzold and Specia, 2016; Yimam et al., 2018; Shardlow et al., 2021; Saggion et al., 2023; Shardlow et al., 2024)
- The present study¹
 - Introduces CompLex-ZH, the first evaluation benchmark for lexical complexity prediction in Chinese.

OMandarin Chinese oThe standard variety of Chinese oYue Chinese, or Cantonese

Rating Collection

- Questionnaire (~300 for each variety)
 - Question (102)
 - 100 normal + 2 validation samples
 - Option (in a 5-point Likert scale)
 - 1 being very easy, 5 being very difficult
- Raters per sample ($\geq = 5$)
- Complexity score • Sample-wise complexity

Context	Score
… 忽然变得澄清见底, <u>翳障</u> 全无。	919
it turns crystal, without <u>obstacles</u> in sight.	.213
此前有团队已经在粪便里发现新冠病毒。	803
The $\underline{\text{team}}$ had found coronavirus in feces.	.095
感受到被失蹤、被跟蹤的實在	EOO
I truly felt disappeared and stalked	.000
點解講GOOD JOB 佢反而又呆哂	
Why he acts so dumb and	.200
when you <u>said</u> GOOD JOB?	

Table 2. Some examples with average high/ low complexity scores. The first 2 are in Mandarin and the last 2 in Cantonese. Target words are

- Included two different Sinitic varieties: Mandarin, the standard Chinese, and Cantonese, a major variety of Chinese but having a low-resource status in terms of NLP research.
- Provides a preliminary evaluation with a bassline regressor based on a combination of hand-crafted features and contextualized embeddings.

oColloquial

ODifferent from Mandarin in vocabulary, grammar, and pronunciation

oHong Kong, Macao, Guangdong, Guangxi, South-East Asia, North America and Western Europe (Sachs and Li, 2007; Yu, 2013; Xiang et al., 2024)

Table 1. Mandarin vs. Cantonese

Related Work

Previous studies on text simplification:

- Mostly limited to Western languages, including English, Portuguese, Spanish, etc. (see Paetzold and Specia, 2016; Yimam et al., 2018; Shardlow et al., 2021; Saggion et al., 2023; Shardlow et al., 2024)
- Notably, Qiang et al., (2021) only included *high-level* words in their research on Chinese lexical simplification.

Complexity prediction:

- Once seen as a binary problem (e.g., Paetzold and Specia, 2016; Yimam et al, 2018)
- First treated as a regression task at the Task 1 at SemEval-2021 (Shardlow et al., 2021)

CompLex (Shardlow et al., 2020, 2022)

- Average of scores by all raters
- Word-wise complexity
 - Average of all sample-wise scores

Evaluation

Experimental Setting

Formulation: Ridge regression

- Given a sentence s with a target word t, the model tries to predict the complexity score c.

underlined.

- Input:
 - Handcrafted features (**HC**)
 - Word length (WLen)
 - Word frequency (LogF)
 - Stroke
 - Contextualized word embeddings (Emb) from CINO², a PLM trained on Mandarin and several minority languages in China
- Metrics
 - Coefficient of determination $(\mathbf{R}^2) \rightarrow [0, 1]$
 - Mean absolute error (MAE) $\rightarrow [0, +\infty)$, 0 means a perfect prediction
- Spearman's rank correlation coefficient (ρ) -> [-1, 1]

A gold standard dataset on English lexical complexity

CompLex-ZH:

- Benchmarking Chinese lexical complexity for the first time
- Includes varying degrees of complexity
- Carefully built from different sources and text genres
- Features complexity ratings provided by native speakers
- Incorporates both Mandarin Chinese and Cantonese

Dataset Creation

Target Selection

- Data source
- 0 Mandarin
 - -Weibo
 - -People's Daily,
 - -BCC corpus (Xun et al., 2016),
 - -Chinese Wikipedia
- The workflow of data processing
 - Target word filtering based on frequency and part-of-speech
 - 1017 target words and 3240 samples collected for Mandarin;

- Train: val: test = 8: 1: 1
 - Test set size:
 - 324 instances for Mandarin, 250 for Cantonese
 - 574 for a joint dataset of both

Results and Findings

- Contextualized embeddings outperform out-ofcontext HC features
- LogF is most predictive among HC features,
- Values in both languages are similar, but explained variance in Cantonese is much lower
 - confirming the Cantonese data pose a nontrivial challenge for Chinese NLP
- Scores in general are relatively low
 - suggesting the need for more sophisticated approaches to Chinese lexical complexity prediction

Conclusion

	Feat.	MAE	R^2	ρ	
Mand.	HC	.065	.186	.091	
	Stroke	.065	.083	.107	
	WLen	.065	.055	.082	
	LogF	.065	.201	.061	
	Emb	.059	.355	.338	
	Comb.	.060	.086	.322	
Canto.	HC	.060	.051	.191	
	Stroke	.063	001	.008	
	WLen	.063	.0184	.158	
	LogF	.061	.022	.149	
	Emb	.061	.056	.353	
	Comb.	.061	.045	.354	
Joint	HC	.065	.047	.135	
	Stroke	.066	002	015	
	WLen	.066	002	109	
	LogF	.066	.040	.116	
	Emb	.062	.131	.329	
	Comb.	.062	.136	.326	

Table 3: Evaluation results. Comb. indicates the combination of the most influential LogF features and the embedding features.

• 260 targets words and 2502 samples for Cantonese

Texts -> Sentences -> Tokens -> Target words -> Samples for rating -> Jieba for Mandarin PyCantonese for Cantonese Example: 这代价太惨痛, **经历**了SARS后应该吸取教训的…… The cost is too heavy; lessons should have been learned after SARS...

o Cantonese

-LIHKG

-Cantonese Wikipedia

-Counseling corpus (Lee et al., 2020)

-PolyU Corpus of Spoken Chinese

Figure 1. Workflow of data processing

- Introduction of ComPlex-ZH:
 - The first dataset for lexical complexity evaluation in Mandarin and Cantonese.
- **Preliminary Findings:**
 - Contextualized embeddings are more predictive of lexical complexity, compared to handcrafted, out-of-context features that were commonly used in the literature.
- Challenges Noted:
 - Limited accuracy, weak-to-moderate correlations, and low explained variance suggest improvement needed.

¹Code and data are available at <u>https://github.com/Laniqiu/CompLex-ZH</u>. ²https://github.com/iflytek/cino?tab=readme-ov-file

Emmanuele Chersoni \boxtimes emmanuele.chersoni@polyu.edu.hk