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Generative Large Language Models (LLMs), such as GPT-3, 
have become increasingly effective and versatile in natural 
language processing (NLP) tasks. One such task is Lexical 
Simplification, where state-of-the-art methods involve 
complex, multi-step processes which can use both deep 
learning and non-deep learning processes. LLaMA, an LLM 
with full research access, holds unique potential for the 
adaption of the entire LS pipeline. LLaMA was fine-tuned to 
create LSLlama, which performs comparably to previous LS 
baseline models LSBert and UniHD.

Abstract

Introduction

Training

LLaMA was fine-tuned using the TSAR-2022 English gold 
standard dataset, which contained 373 instances of a 
sentence, complex word, and substitute candidates. The 
data was made into a natural language prompt.

Inference

LSLlama was prompted with a similar variation of the above 
prompt, specifying to respond with a list of 10 synonyms. 
The repetition penalty generation parameter needed to be 
tuned so that the model responded with a sufficient 
number of different candidates.

Evaluation

LSLlama was compared to two benchmark LS models: 
LSBert (Qiang et al., 2020) and UniHD (Aumiller and Gertz, 
2022). The below metrics were used to evaluate the models 
on three datasets of the same format as TSAR 2022: 
NNSeval, BenchLS, and LexMTurk.

Metrics
Accuracy@1 (ACC@1): the percent of instances where the 
top-ranked substitute candidate is in the test dataset candidate 
list

Accuracy@k@Top1 (ACC@k@Top1): the percent of instances 
where at least one of the k top-ranked substitute candidates 
matched the top-ranked candidate of the test dataset

Potential@k (POT@k): the percent of instances where at least 
one of the k top-ranked substitute candidates is present in the 
test dataset candidate list

Mean Average Precision@k (MAP@k): a measure that 
incorporates the percent of k top-ranked substitute candidates 
that are present in the test dataset candidate list and the relative 
ranking of the proposed substitute candidate list

Method
By Metric

Accuracy@1 - UniHD always scored highest on NNSeval & 
LexMTurk, LSLlama always scored highest on BenchLS

Accuracy@k@Top1 - LSLlama scored highest 8 out of 9 
times over all datasets

Potential@k - UniHD always scored highest on NNSeval & 
LexMTurk, LSLlama always scored highest on BenchLS

MAP@k - UniHD always scored highest on NNSeval & 
LexMTurk, LSLlama always scored highest on BenchLS
NNSeval & LexMTurk

Overall

The mixed results indicate that UniHD and LSLlama 
performed comparably when looking at all datasets. 
Additionally, for all trials, LSBert was never the top scoring 
model on any metric.
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Lexical Simplification

Lexical Simplification (LS) is a sub-task within the field of 
Text Simplification in which complex words are substituted 
with simpler words while maintaining the meaning of the 
surrounding sentence. 

Problem

Current state-of-the-art LS models: 
● involve a multi-step process to generate and rank 

substitution candidates. 
● improve performance by incorporating deep learning, 

but can require large amounts of compute

LLaMA

● Generative Large Language Model with full research 
access

● achieves similar performance to GPT-3 in various NLP 
tasks (Touvron et al., 2023)

● fine-tuned on 52K question-answer prompts to create 
Alpaca, a model which was found to often behave 
similarly to ChatGPT in answering broad sets of 
questions (Taori et al., 2023)

LSLlama: LLaMA for Lexical Simplification

LLaMA fine-tuned on an LS task:
● simplifies multi-step process into single step, taking 

advantage of natural language input and output 
● reduces significant compute needed to train LLM

LSLlama’s performance was evaluated and compared to 
previously existing benchmark LS models that use deep 
learning, such as LSBert and UniHD using three testing 
datasets.

Variation in Output Length - LSLlama did not respond with 
a consistent number of substitution candidates. 
● generation was done with a single token, no parameter 

that could directly control the length of the list
● fine-tuning dataset did not have a consistent length of 

candidate lists

Prompt Stability - the quality of the response list varied 
dramatically depending on the exact wording of the prompt

Adding “different” and “simpler” significantly improved the 
quality of the candidate lists. Before this, the model was not 
responding with words that would satisfy the LS task.

Intuitively, using the first wording is more accurate as the 
best substitution candidates are not necessarily exact 
synonyms of the complex word, and the best candidate to 
replace a word might be a phrase of two or more words. 
However, the second wording of the prompt noticeably 
outperformed the first wording. 

Computation - LSLlama took about 30 minutes to fine-tune, 
needed to fine-tune for every prompt and hyperparameter 
change

Dataset Size - TSAR contained 373 instances, whereas 
Alpaca’s fine-tuning dataset contained 52K instances

Errors & Limitations

Performance Summary

● LSLlama outperformed UniHD in all metrics on BenchLS
● UniHD outperformed LSLlama on most, but not all, 

metrics on NNSeval and LexMTurk
● LSBert also never scored the highest on any metric. 

Conclusion

● LSLlama was able to simplify the multi-step process of 
LSBert
○ LSLlama used more compute than LSBert

● LSLlama was overall able to perform comparably to 
UniHD on evaluation metrics
○ LSLlama used drastically less compute than UniHD

● LLaMA and other LLMs that are fine-tuned on a LS task 
have the potential to improve upon existing benchmarks 
in Lexical Simplification

Conclusions
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Results
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LSBert - Benchmark

● Candidate generation: BERT-based model
● Size: 110M parameters
● Ranking method: combined model output, word 

embeddings, and semantic similarity scores

LSLlama

● LLaMA fine-tuned on LS task
● Size: 7B parameters
● Candidate generation/ranking done in single step

UniHD - Benchmark

● Candidate generation: 6 runs of GPT-3 with different 
prompt variations

● Size: 175B parameters
● Ranking method: compiled the results of the runs
● Highest scoring English language model in TSAR-2022 

Shared Task on Lexical Simplification (Saggion et al., 
2022)

Models


