
LSLlama: Fine-Tuned LLaMA for Lexical Simplification

Anthony Baez
Massachusetts Institute of Technology

Cambridge, MA, USA
acbaez@mit.edu

Horacio Saggion
LaSTUS / TALN / DTIC
Universitat Pompeu Fabra

Barcelona, Spain
horacio.saggion@upf.edu

Abstract

Generative Large Language Models (LLMs),
such as GPT-3, have become increasingly ef-
fective and versatile in natural language pro-
cessing (NLP) tasks. One such task is Lexical
Simplification, where state-of-the-art methods
involve complex, multi-step processes which
can use both deep learning and non-deep learn-
ing processes (Sheang et al., 2022). LLaMA, an
LLM with full research access, holds unique po-
tential for the adaption of the entire LS pipeline.
This paper details the process of fine-tuning
LLaMA to create LSLlama, which performs
comparably to previous LS baseline models
LSBert and UniHD.

1 Introduction

Lexical Simplification (LS) is a sub-task within
the field of Text Simplification (Saggion, 2017) in
which complex words are substituted with simpler
words while maintaining the meaning of the sur-
rounding sentence (Shardlow, 2014). This is done
to improve the comprehension of text for those who
do not have sufficient reading proficiency, such as
a language learner, young child, or someone with a
learning disability (Saggion et al., 2022). Current
LS models usually involve a multi-step process, in-
cluding 1) the identification of complex words; 2)
the generation of substitution words; 3) the selec-
tion of the substitutes based on context; 4) ranking
substitutes by their simplicity; and 5) further con-
text adaptation (Saggion et al., 2022). Recently,
deep learning has been incorporated into some of
these steps, such as a method that adapted BERT
(Devlin et al., 2019), a bidirectional encoder, to
generate substitution words (Qiang et al., 2020).

However, the development of generative LLMs,
such as GPT-3 (Brown et al., 2020), presents an
opportunity to drastically simplify this multi-step
process by utilizing their ability to process and
evaluate natural language. While these LLMs have

significantly more parameters (110M for BERT
vs. 175B for GPT3), and their training requires a
substantially greater amount of computation than
BERT-based models, this cost could be mitigated
by fine-tuning a pre-trained LLM on a selected
task. This fine-tuning could enable the model size
to be drastically reduced while maintaining similar
performance.

Large Language Model Meta AI (LLaMA) is a
recently released generative LLM (Touvron et al.,
2023). The size of its smallest variant, at 7B param-
eters, and its full research access provide a unique
potential for adapting it to perform the LS task.

This paper details the novel fine-tuning of
LLaMA on a Lexical Simplification task to cre-
ate LSLlama. In order to determine if LSLlama
is effective at the task, its performance was eval-
uated and compared to previously existing bench-
mark LS models that use deep learning, such as
LSBert (Qiang et al., 2020) and UniHD (Aumiller
and Gertz, 2022) using three testing datasets 1.

The structure of the following sections is as fol-
lows: Section 2 details related work in LS and deep
learning. Section 3 details the method used to fine-
tune LSLlama and evaluate the models. Section 4
details the results of this evaluation, and Section
5 discusses the implications of these results, error
analysis, and limitations of the method. Section 6
concludes the paper and points to possible future
work.

2 Related Work

The first method to incorporate deep learning into
LS involved the use of neural networks to rank
substitution candidates after being generated by
a word embeddings model (Paetzold and Specia,
2017).

1The data and code are available at https://github.com/
acbaez9/LSLlama/tree/main

https://github.com/acbaez9/LSLlama/tree/main
https://github.com/acbaez9/LSLlama/tree/main

A later implementation (Qiang et al., 2020) used
BERT, a bidirectional encoder transformer model.
BERT was used as a masked language model to pre-
dict the masked word in a sample sentence for sim-
plification. The proposed substitution candidates
were then ranked using a combination of LSBert,
semantic similarity, and a frequency feature.

Recently developed generative LLMs such as
GPT-3 (Brown et al., 2020) can be trained on bil-
lions of tokens and can process and respond in
natural language. In the TSAR-2022 Shared Task
on Lexical Simplification (Saggion et al., 2022),
the highest scoring model on the English language
task, called UniHD, used GPT-3 inference with six
prompt variations to generate substitution candi-
dates and a ranking algorithm that combined these
candidate lists (Aumiller and Gertz, 2022). While
this method outperformed all other BERT-based
models, GPT-3 is not fully publicly available, and
inference had to be done using paid API requests.

A recent generative LLM, LLaMA, (Touvron
et al., 2023) was shown to achieve similar perfor-
mance to GPT-3 in various NLP tasks at a fraction
of the size with architecture improvements and a
1T token training set. Alpaca, a model that was
created by fine-tuning LLaMA on 52K question-
answer prompts, was also found to often behave
similarly to ChatGPT in answering broad sets of
questions (Taori et al., 2023).

3 Method

In order to evaluate LSLlama and compare it to
LSBert and UniHD, LLaMA was first fine-tuned
on an LS task to produce LSLlama. The specific
version of LSBert used was adapted from its orig-
inal version to act as a benchmark of an LS task
(Štajner et al., 2022). All three models were then
used to propose substitution candidates on three
different datasets and evaluated on performance
metrics.

3.1 Datasets

The dataset used to fine-tune LLaMA was the
TSAR-2022 English gold standard dataset (TSAR)
from Saggion et al. (2022), a multilingual shared
LS task. There were three test datasets used to
compare the three models: NNSeval (Paetzold and
Specia, 2016b), BenchLS (Paetzold and Specia,
2016a), and LexMTurk (Horn et al., 2014). All
datasets each contained hundreds of instances of a
sentence, target word, and list of substitution can-

didates created using human annotators. While
LexMTurk was sourced from Wikipedia, BenchLS
was created by combining two other datasets, and
NNSeval is a refined version of BenchLS.

All datasets were processed slightly to create
ranked lists of candidate substitutes. For the TSAR
dataset, repeated words were removed from its lists
of candidates. In BenchLS and NNSeval, each
candidate substitute had a number denoting the
frequency that it was chosen by annotators, and
this was removed.

3.2 Training
The 7B parameter variant of LLaMA was fine-
tuned on the TSAR dataset using a modified ver-
sion of the fine-tuning method of Alpaca (Taori
et al., 2023). The fine-tuning involved feeding a
prompt to the model which instructs it to respond
with a list of synonyms that fit the context of the
sentence. The target given was the corresponding
list of substitution candidates, ranked by frequency,
for that instance. This was done so the model could
directly respond with ranked lists. The exact word-
ing of the prompt went through multiple alterations
to improve performance. The final version of the
prompt used for fine-tuning, along with a example
instance of an target word, sentence, and candidate
list is in Table 1.

Prompt:
Respond with a list of different, simpler syn-
onyms of the complex word in the given context.
Complex Word: prototype
Sentence: This discovery helped to establish
yet another spectral class even cooler than L
dwarfs, known as ”T dwarfs”, for which Gliese
229B is the prototype.
Response:
Ranked Candidate List:
[’model’, ’sample’, ’original’, ’example’, ’tem-
plate’, ’base’, ’archetype’, ’test’, ’first’]

Table 1: An example instance of the prompt and cor-
responding substitution candidate list used to fine-tune
LSLlama

3.3 Inference
The generation parameters of the LSLlama infer-
ence were manually tuned. The most extensively
tuned parameter was repetition penalty, which had
considerable impact on the quality and nature of the
output of LSLlama. When the repetition penalty

Dataset Model ACC@1 ACC@1@Top1 ACC@2@Top1 ACC@3@Top1

NNSeval
LSBert 0.4310 0.2469 0.3766 0.4519
UniHD 0.5732 0.2803 0.3849 0.4435

LSLlama 0.4519 0.3096 0.3808 0.4686

BenchLS
LSBert 0.6631 0.3703 0.5016 0.5748
UniHD 0.7234 0.3057 0.4564 0.5436

LSLlama 0.7820 0.4700 0.5700 0.6460

LexMTurk
LSBert 0.8300 0.3200 0.4300 0.4920
UniHD 0.8480 0.4060 0.5560 0.6260

LSLlama 0.8060 0.4680 0.5740 0.6440

Table 2: Results of models on the NNSeval, BenchLS, and LexMTurk datasets for Accuracy@1 and
Accuracy@k@Top1

Dataset Model POT@3 POT@5 POT@10 MAP@3 MAP@5 MAP@10

NNSeval
LSBert 0.6946 0.7699 0.8619 0.2894 0.2180 0.1349
UniHD 0.7824 0.8619 0.9163 0.3661 0.2659 0.1629

LSLlama 0.7657 0.8536 0.8703 0.3233 0.2513 0.1425

BenchLS
LSBert 0.8396 0.8859 0.9225 0.4471 0.3341 0.2042
UniHD 0.8751 0.9214 0.9483 0.4766 0.3552 0.2137

LSLlama 0.9420 0.9720 0.9760 0.5519 0.4329 0.2453

LexMTurk
LSBert 0.9620 0.9680 0.9900 0.6044 0.4591 0.2865
UniHD 0.9700 0.9900 1.0000 0.6067 0.4638 0.2893

LSLlama 0.9700 0.9860 0.9880 0.5777 0.4556 0.2620

Table 3: Results of models on the NNSeval, BenchLS, and LexMTurk datasets for Potential@k and MAP@k

was too low, the model would respond with a
long list of identical or very similar substitution
candidates that would cause an error in the post-
processing. When the repetition penalty was too
high, the model would only output a few substitu-
tion candidates. Therefore, an optimal repetition
penalty would not cause a post-processing error
while allowing the responded list to reach a length
of ten as frequently as possible. The optimal repeti-
tion penalty, to the nearest hundredth, was found by
starting at a value of 1.00 and incrementally raising
it until there was not an error in the post-processing
after inference. If the repetition penalty for one
dataset was found to be too low for another dataset,
the tuning process was done again so the repeti-
tion penalty value did not cause an error for any
dataset. The lowest repetition penalty value that
did not cause an error was used for inference on
all datasets, so that the same version of the model
was used on all datasets. Regarding the prompt
used for inference, it only differed from the prompt
used in fine-tuning in that it asked specifically for
a list of ten substitution candidates. LSLlama was
eventually able to consistently output a single to-

ken that was a list of Python strings, so only minor
post-processing was needed to correct occasional
malformed strings and convert the output into a
Python list. Other implementation details can be
found in the Appendix.

3.4 Evaluation

Various metrics were calculated with the results
of the tested models. These metrics were used in
Saggion et al. (2022) to quantify the performance
of models on the TSAR dataset.

Accuracy@1 (ACC@1): the percent of instances
where the top-ranked substitute candidate is in the
test dataset candidate list

Accuracy@k@Top1 (ACC@k@Top1): the per-
cent of instances where at least one of the k
top-ranked substitute candidates matched the top-
ranked candidate of the test dataset

Potential@k (POT@k): the percent of instances
where at least one of the k top-ranked substitute
candidates is present in the test dataset candidate
list

Mean Average Precision@k (MAP@k): a mea-
sure that incorporates the percent of k top-ranked

substitute candidates that are present in the test
dataset candidate list and the relative ranking of the
proposed substitute candidate list

Values of k ∈ {1, 2, 3} were used for
ACC@k@top1, and values of k ∈ {3, 5, 10} were
used for Potential@k and MAP@k

4 Results

After evaluating LSBert, UniHD, and LSLlama on
the test datasets, the results of the Accuracy@1
and Accuracy@k@Top1 metrics were compiled in
Table 2, and the Potential@k and MAP@k metrics
were compiled in Table 3.

Table 2 shows that for ACC@1, on the NNSe-
val dataset, LSBert scored 0.4310, UniHD scored
0.5732, and LSLlama scored 0.4519. On the
BenchLS dataset, LSBert scored 0.6631, UniHD
scored 0.7234, and LSLlama scored 0.7820. On the
LexMTurk dataset, LSBert scored 0.8300, UniHD
scored 0.8480, and LSLlama scored 0.8060. For
ACC@1, in the NNSeval and LexMTurk datasets,
UniHD is the highest scoring model, and on the
BenchLS dataset, LSLlama is the highest scoring
model. This signifies that UniHD’s top-ranked sub-
stitute candidate is better than those of LSBert and
LSLlama for the NNSeval and LexMTurk datasets,
while LSLlama’s top-ranked substitute candidate
is the best for the BenchLS dataset. However, for
ACC@k@Top1, LSLlama outperforms LSBert and
UniHD on eight of the nine trials over all datasets.
This shows that among the first three top-ranked
substitution candidates, LSLlama generated candi-
dates more likely to match the top candidate in all
test datasets nearly every time.

In the POT@k values in Table 3, UniHD per-
formed better than LSBert and LSLlama for all k
values in the NNSeval and LexMTurk datasets, ex-
cept for one tie between UniHD and LSLlama in
POT@3 in the LexMTurk dataset. In the BenchLS
dataset, LSLlama performed better than LSBert
and UniHD in all k values. This indicates that on
the NNSeval and LexMTurk datasets, UniHD is
almost always able to produce the best substitutes
over the whole list, while for BenchLS, LSLlama
is able to produce better substitutes over the whole
candidate list.

With the MAP@k values in Table 3, UniHD
performed better than LSBert and LSLlama in the
NNSeval and LexMTurk datasets. In the BenchLS
dataset, LSLlama performed better than LSBert
and UniHD in all k values. This result shows that

UniHD generally proposes more relevant and bet-
ter ranked candidates on the NNSeval and LexM-
Turk datasets, while LSLlama does this best on the
BenchLS dataset.

5 Discussion

On the BenchLS dataset, LSLlama achieved the
best scores on all evaluation metrics, so LSLlama
consistently outperformed LSBert and UniHD on
this dataset. On NNSeval, there were more mixed
results in the ACC@k@Top1 metrics, with both
UniHD and LSLlama having the highest score
in different trials. However, for all other met-
rics on NNSeval, UniHD performed the best. On
LexMTurk, LSLlama performed the best in the
ACC@k@Top1 metrics, while UniHD performed
as well or better than LSLlama on the other metrics.
LSBert was always outperformed by either UniHD
or LSLlama.

UniHD was better able to identify the top-ranked
substitution candidate, as evidenced in its highest
Accuracy@1 value, have a better ranking of candi-
dates, as evidenced by its highest MAP@k value,
and propose more relevant candidates when hav-
ing multiple attempts, as shown by its highest Po-
tential@k values on the NNSeval and LexMTurk
datasets. However, on these datasets, LSLlama
usually best identifies the test dataset’s top-ranked
candidate in the first few substitution candidates, as
evidenced by its highest ACC@k@Top1 values on
all but one trial. On the BenchLS dataset, LSLlama
was best able to identify the top-ranked substitu-
tion candidates, have a better ranking of candidates,
and propose more relevant candidates when having
multiple attempts.

When looking at results overall, LSLlama al-
ways outperformed UniHD on one dataset. With
the other two datasets, LSLlama outperformed
UniHD on some metrics, and UniHD outperformed
LSLlama on some metrics, with UniHD outper-
forming LSLlama more often. This indicates that,
overall, UniHD and LSLlama performed compara-
bly when looking at all datasets as a whole. Addi-
tionally, for all trials, at least one of these two mod-
els, UniHD and LSLlama, always outperformed
LSBert, as LSBert was never the top scoring model
on any metric.

5.1 Error Analysis

While using a generative LLM allows for drastic
simplification of the LS pipeline, it can also lead to

difficulty getting the model to respond coherently
and as intended. Some issues and errors that were
encountered are detailed below.

Variation in Output Length Despite including
the specification of a list of ten substitute words
in the prompt used for inference, LSLlama did not
respond with a consistent number of substitution
candidates. This likely occurred due to the gener-
ation method used, in which the list of candidates
was generated using a single token, so there was
no parameter that could directly control the length
of the substitute list. The fine-tuning dataset for
LSLlama also did not have a consistent length of
substitution candidate lists. However, the average
length of the candidate lists was around ten, and the
fine-tuning and generation parameters were able to
regulate the length of the response enough so that
there was a difference in the results between the
metrics with k = 5 and k = 10.

Prompt Stability A commonly-encountered
weakness of generative LLMs is how subtle
changes of the prompt can lead to dramatic changes
in the nature of the output. A process of modify-
ing the prompt and then performing inference to
qualitatively gauge its effect was done in order to
improve the efficiency of the prompt. Two of the
changes that yielded the most improvement was
specifying ”different” and ”simpler” synonyms in
the prompt, which is reflected in the final prompt
in Table 1. The lack of intuitiveness of this process
made it time consuming and imprecise. For exam-
ple, ”Respond with a list of words that can replace
the complex word” was changed to ”Respond with
a list of synonyms of the complex word”. In this
specific LS task, using the first wording is more
accurate, as depending on the context, the best sub-
stitution candidates are not necessarily exact syn-
onyms to the complex word, and the best candidate
to replace a word might be a phrase of two or more
words. However, the second wording of the prompt
noticeably outperformed the first wording. An ex-
planation could be that asking for a ”synonym” is
a more clear and direct command than asking for
”words to replace”. Every time such a change to
the inference prompt was made, the fine-tuning
prompt also needed to be changed, as altering only
the inference prompt led to incomprehensible re-
sponses from the model. This resulted in needing to
fine-tune the model again to get the results of each
prompt change, which added a substantial amount
of time to the process.

5.2 Limitations

In working with LLMs, a significant amount of
computational resources were needed for fine-
tuning and inference. This computational cost re-
sulted in longer times for fine-tuning and inference,
limiting the extent to which the fine-tuning hyper-
parameters and the inference parameters could be
optimized.

Additionally, the TSAR dataset used for fine-
tuning only contained 373 instances, a very
small number when compared to other fine-tuning
datasets, such as the 52K instance dataset used in
Alpaca. Whereas ChatGPT was used to generate
these examples, the specificity needed for the LS
task necessitates human annotators in the creation
of a dataset.

6 Conclusion and Future Work

This paper compared a fine-tuned, generative LLM,
LSLlama, to previously existing LS baseline mod-
els LSBert and UniHD. At evaluation, LSLlama
outperformed UniHD in all metrics on one dataset,
while on the other two datasets, UniHD outper-
formed LSLlama on most, but not all, metrics. LS-
Bert also never scored the highest on any metric.
Regarding their architectures, generative LLMs re-
quire more computational resources than BERT-
based models, however LSLlama is able to simplify
the multi-step process of LSBert. LSLlama gener-
ates and ranks substitution candidates at inference,
whereas a separate ranking algorithm is used after
inference from LSBert. A separate ranking algo-
rithm is also used in UniHD. Even though UniHD
and LSLlama are both generative LLMs, LSLlama
takes advantage of fine-tuning to significantly re-
duce its size, from 175B parameters for GPT-3
to 7B parameters for LSLlama, while maintain-
ing comparable performance on evaluation metrics.
Despite some recorded challenges posed by their
architecture, this research demonstrates the poten-
tial for LLaMA and other LLMs that are fine-tuned
on a LS task to improve upon existing benchmarks
in Lexical Simplification.

For future work, fine-tuning could be done using
multiple datasets. This could improve the model’s
specificity, as it would increase the size of the train-
ing set used for fine-tuning. Testing then can be
done on one dataset. In addition, further manipula-
tion of the fine-tuning hyperparameters, inference
parameters, and prompt wording could also be pur-
sued to improve the performance of LSLlama.

7 Lay Summary

Lexical Simplification (LS) is a field which devel-
ops methods to simplify text by substituting com-
plex words with simpler ones while maintaining
the meaning of the surrounding sentence. This is
done to improve the reading comprehension of text
for those who do not have sufficient proficiency in
a specific language.

Recently, methods involving deep learning,
which use multi-layered neural networks, have im-
proved upon the performance of previous methods
that did not incorporate deep learning. There are
two notable methods for LS that use deep learn-
ing: LSBert and UniHD. LSBert uses a combina-
tion of a deep learning model and other non-deep
learning methods. UniHD uses a Large Language
Model (LLM), a large neural network that runs on
many powerful computer components called graph-
ics processing units (GPUs), and ranks multiple
outputs to propose candidates to substitute for a
selected complex word.

Both of these models pose challenges. LS-
Bert uses a multi-step process with multiple inputs
to propose candidates, while UniHD uses a two-
step process that needs a large network of GPUs.
LSLlama, the proposed model, resolves these weak-
nesses by using a single-step process that can be
run on four GPUs. The performance of LSBert,
UniHD, and LSLlama on a LS task were compared
to determine whether LSLlama is competitive with
these previous baseline models.

After carrying out testing, LSLlama was found to
perform comparably to LSBert and UniHD on the
three test datasets. LSLlama outperformed UniHD
on one dataset consistently, and UniHD outper-
formed LSLlama the majority of the time on the
other two datasets. LSBert was never the high-
est performing model on any metric. This demon-
strates that the improvements to LSLlama’s design
do not come at the cost of significant performance,
indicating a promising direction for improvement
in lexical simplification.

By simplifying text with LS, it becomes more ac-
cessible for readers such as new language learners,
young children, or those with a learning disability.
In order for someone to benefit from this research,
LSLlama would need to be incorporated as a com-
ponent in a text simplification system that can be
used with natural language and that is available for
free or commercial use.

References
Dennis Aumiller and Michael Gertz. 2022. UniHD at

TSAR-2022 shared task: Is compute all we need for
lexical simplification? In Proceedings of the Work-
shop on Text Simplification, Accessibility, and Read-
ability (TSAR-2022), pages 251–258, Abu Dhabi,
United Arab Emirates (Virtual). Association for Com-
putational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Colby Horn, Cathryn Manduca, and David Kauchak.
2014. Learning a lexical simplifier using wikipedia.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 458–463.

Gustavo Paetzold and Lucia Specia. 2016a. Benchmark-
ing lexical simplification systems. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3074–
3080.

Gustavo Paetzold and Lucia Specia. 2016b. Unsuper-
vised lexical simplification for non-native speakers.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30.

Gustavo Paetzold and Lucia Specia. 2017. Lexical sim-
plification with neural ranking. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 34–40.

Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, and Xin-
dong Wu. 2020. Lexical simplification with pre-
trained encoders. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pages
8649–8656.

Horacio Saggion. 2017. Automatic Text Simplification,
volume 10 of Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publishers.

Horacio Saggion, Sanja Štajner, Daniel Ferrés,
Kim Cheng Sheang, Matthew Shardlow, Kai North,
and Marcos Zampieri. 2022. Findings of the TSAR-
2022 shared task on multilingual lexical simplifica-
tion. In Proceedings of the Workshop on Text Simpli-
fication, Accessibility, and Readability (TSAR-2022),

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423

pages 271–283, Abu Dhabi, United Arab Emirates
(Virtual). Association for Computational Linguistics.

Matthew Shardlow. 2014. A survey of automated text
simplification. International Journal of Advanced
Computer Science and Applications, 4(1):58–70.

Kim Cheng Sheang, Daniel Ferrés, and Horacio Sag-
gion. 2022. Controllable lexical simplification for En-
glish. In Proceedings of the Workshop on Text Simpli-
fication, Accessibility, and Readability (TSAR-2022),
pages 199–206, Abu Dhabi, United Arab Emirates
(Virtual). Association for Computational Linguistics.

Sanja Štajner, Daniel Ferrés, Matthew Shardlow, Kai
North, Marcos Zampieri, and Horacio Saggion. 2022.
Lexical simplification benchmarks for english, por-
tuguese, and spanish. Frontiers in Artificial Intelli-
gence, 5:991242.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

A Appendix

Huggingface Transformers and Pytorch were used
for implementation of the model. DeepSpeed was
also implemented to optimize fine-tuning, which
used the cpu adam optimizer. The model was fine-
tuned for 4 epochs. All other fine-tuning hyperpa-
rameters are identical to Alpaca (Taori et al., 2023).
The fine-tuning and inference was done on 4 V100-
32G GPUs.

Inference on LSLlama was performed using
greedy decoding with a temperature of 0.1, top k
of 0.75, and a repetition penalty of 1.11.

B Acknowledgements

We would like to thank Kim Cheng Sheang, Euan
McGill, and Ella Tubbs for their contributions. We
would also like to thank the MISTI program at MIT
for making this collaboration possible.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

